The SPDE model with transparent barriers

The transparent barrier model

This model considers an SPDE over a domain Ω which is partitioned into k subdomains Ωd, d ∈ {1, …, k}, where d = 1kΩd = Ω. A common marginal variance is assumed but the range can be particular to each Ωd, rd.

From Bakka et al. (2019), the precision matrix is $$ \mathbf{Q} = \frac{1}{\sigma^2}\mathbf{R}\mathbf{\tilde{C}}^{-1}\mathbf{R} \textrm{ for } \mathbf{R}_r = \mathbf{C} + \frac{1}{8}\sum_{d=1}^kr_d^2\mathbf{G}_d , \;\;\; \mathbf{\tilde{C}}_r = \frac{\pi}{2}\sum_{d=1}^kr_d^2\mathbf{\tilde{C}}_d $$ where σ2 is the marginal variance. The Finite Element Method - FEM matrices: C, defined as Ci, j = ⟨ψi, ψj⟩ = ∫Ωψi(s)ψj(s)∂s, computed over the whole domain, while Gd and d are defined as a pair of matrices for each subdomain (Gd)i, j = ⟨1Ωdψi, ∇ψj⟩ = ∫Ωdψi(s)∇ψj(s)∂s  and  (d)i, i = ⟨1Ωdψi, 1⟩ = ∫Ωdψi(s)∂s.

In the case when r = r1 = r2 = … = rk we have $\mathbf{R}_r = \mathbf{C}+\frac{r^2}{8}\mathbf{G}$ and $\mathbf{\tilde{C}}_r = \frac{\pi r^2}{2}\mathbf{\tilde{C}}$ giving $$ \mathbf{Q} = \frac{2}{\pi\sigma^2}( \frac{1}{r^2}\mathbf{C}\mathbf{\tilde{C}}^{-1}\mathbf{C} + \frac{1}{8}\mathbf{C}\mathbf{\tilde{C}}^{-1}\mathbf{G} + \frac{1}{8}\mathbf{G}\mathbf{\tilde{C}}^{-1}\mathbf{C} + \frac{r^2}{64}\mathbf{G}\mathbf{\tilde{C}}^{-1}\mathbf{G} ) $$ which coincides with the stationary case in Lindgren and Rue (2015), when using $\tilde{\mathbf{C}}$ in place of C.

Implementation

In practice we define rd as rd = pdr, for known p1, …, pk constants. This gives $$ \mathbf{\tilde{C}}_r = \frac{\pi r^2}{2}\sum_{d=1}^kp_d^2\mathbf{\tilde{C}}_d = \frac{\pi r^2}{2} \mathbf{\tilde{C}}_{p_1,\ldots,p_k} \textrm{ and } \frac{1}{8}\sum_{d=1}^kr_d^2\mathbf{G}_d = \frac{r^2}{8}\sum_{d=1}^kp_d^2\mathbf{\tilde{G}}_d = \frac{r^2}{8}\mathbf{\tilde{G}}_{p_1,\ldots,p_k} $$ where p1, …, pk and p1, …, pk are pre-computed.

References

Bakka, H., J. Vanhatalo, J. Illian, D. Simpson, and H. Rue. 2019. “Non-Stationary Gaussian Models with Physical Barriers.” Spatial Statistics 29 (March): 268–88. https://doi.org/https://doi.org/10.1016/j.spasta.2019.01.002.
Lindgren, Finn, and Havard Rue. 2015. Bayesian Spatial Modelling with R-INLA.” Journal of Statistical Software 63 (19): 1–25.